Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Evol ; 38(1): 48-57, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-32667997

RESUMEN

Direct comparisons between historical and contemporary populations allow for detecting changes in genetic diversity through time and assessment of the impact of habitat fragmentation. Here, we determined the genetic architecture of both historical and modern lions to document changes in genetic diversity over the last century. We surveyed microsatellite and mitochondrial genome variation from 143 high-quality museum specimens of known provenance, allowing us to directly compare this information with data from several recently published nuclear and mitochondrial studies. Our results provide evidence for male-mediated gene flow and recent isolation of local subpopulations, likely due to habitat fragmentation. Nuclear markers showed a significant decrease in genetic diversity from the historical (HE = 0.833) to the modern (HE = 0.796) populations, whereas mitochondrial genetic diversity was maintained (Hd = 0.98 for both). Although the historical population appears to have been panmictic based on nDNA data, hierarchical structure analysis identified four tiers of genetic structure in modern populations and was able to detect most sampling locations. Mitogenome analyses identified four clusters: Southern, Mixed, Eastern, and Western and were consistent between modern and historically sampled haplotypes. Within the last century, habitat fragmentation caused lion subpopulations to become more geographically isolated as human expansion changed the African landscape. This resulted in an increase in fine-scale nuclear genetic structure and loss of genetic diversity as lion subpopulations became more differentiated, whereas mitochondrial structure and diversity were maintained over time.


Asunto(s)
Distribución Animal , Ecosistema , Variación Genética , Leones/genética , África , Animales , Femenino , Genoma Mitocondrial , Masculino , Filogeografía
2.
PLoS One ; 14(5): e0217179, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31150429

RESUMEN

The Luangwa Valley in eastern Zambia is a transverse offshoot of the Great Rift Valley system. This region appears to have an isolating effect as evidenced by suspected endemic subspecies, such as the Cookson's wildebeest and Thornicroft's giraffe. Recent mitochondrial DNA studies demonstrated that African lions in Zambia consist of two highly diverse eastern and western sub-populations. Herein, we report nuclear and mitochondrial DNA results from 409 lions that support this population substructure across Zambia but proposes only partial isolation of the Luangwa Valley with more movement between the populations than previously thought. Population assignment analysis identifies two populations with little evidence of admixture assigning lions to either the eastern or western sub-populations. A high occurrence of private alleles and clear evidence for a Wahlund effect further justify the presence of a highly structured population. But, while mitochondrial DNA analysis still shows little to no matrilineal gene flow (FST = 0.53) between sub-populations, microsatellite analysis suggests there is gene flow (FST = 0.04) with low but significant isolation-by-distance and an average of 6 migrants per generation. Evidence of isolation-by-distance is also found in factorial correspondence analysis with the Lower Zambezi National Park and eastern corridor clusters overlapping isolated clusters of the Luangwa Valley and western sub-population. From this evidence, the Luangwa Valley appears separated from the western sub-population with some dispersal through the southern regions of the eastern sub-population. Both the eastern and western sub-populations have high heterozygosity (0.68 and 0.69, respectively) and genetic diversity (0.47 and 0.50, respectively) values, indicative of genetically healthy populations.


Asunto(s)
Migración Animal , Monitoreo del Ambiente/métodos , Variación Genética , Genética de Población , Leones/genética , Animales , ADN Mitocondrial/genética , Femenino , Geografía , Masculino
3.
PLoS One ; 10(12): e0143827, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26674533

RESUMEN

Analysis of DNA sequence diversity at the 12S to 16S mitochondrial genes of 165 African lions (Panthera leo) from five main areas in Zambia has uncovered haplotypes which link Southern Africa with East Africa. Phylogenetic analysis suggests Zambia may serve as a bridge connecting the lion populations in southern Africa to eastern Africa, supporting earlier hypotheses that eastern-southern Africa may represent the evolutionary cradle for the species. Overall gene diversity throughout the Zambian lion population was 0.7319 +/- 0.0174 with eight haplotypes found; three haplotypes previously described and the remaining five novel. The addition of these five novel haplotypes, so far only found within Zambia, nearly doubles the number of haplotypes previously reported for any given geographic location of wild lions. However, based on an AMOVA analysis of these haplotypes, there is little to no matrilineal gene flow (Fst = 0.47) when the eastern and western regions of Zambia are considered as two regional sub-populations. Crossover haplotypes (H9, H11, and Z1) appear in both populations as rare in one but common in the other. This pattern is a possible result of the lion mating system in which predominately males disperse, as all individuals with crossover haplotypes were male. The determination and characterization of lion sub-populations, such as done in this study for Zambia, represent a higher-resolution of knowledge regarding both the genetic health and connectivity of lion populations, which can serve to inform conservation and management of this iconic species.


Asunto(s)
ADN Mitocondrial , Variación Genética , Haplotipos , Leones/genética , Alelos , Animales , Femenino , Frecuencia de los Genes , Geografía , Leones/clasificación , Masculino , Filogenia , Filogeografía , Polimorfismo de Nucleótido Simple , Zambia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...